

PHYTOCHEMISTRY

Phytochemistry 62 (2003) 1271-1275

www.elsevier.com/locate/phytochem

A flavone and an unusual 23-carbon terpenoid from Andrographis paniculata

Muntha K. Reddy^a, Mopuru V.B. Reddy^a, Duvvuru Gunasekar^a, *, Madugula M. Murthy^b, Cristelle Caux^c, Bernard Bodo^c

^aNatural Products Division, Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, India

^bIndian Institute of Chemical Technology, Hyderabad 500 007, India

^cLaboratoire de Chimie des Substances Naturelles, ESA 8041 CNRS, Museum National d'Histoire Naturelle,
63 rue Buffon, 75005 Paris, France

Received 13 September 2002; received in revised form 10 January 2003

Abstract

Phytochemical investigation of the roots and aerial parts of *Andrographis paniculata* Nees yielded a new flavone, 5-hydroxy-7,2',6'-trimethoxyflavone and an unusual 23-carbon terpenoid, 14-deoxy-15-isopropylidene-11,12-didehydroandrographolide together with five known flavonoids and four known diterpenoids. The structures of these compounds were determined on the basis of spectral and chemical studies.

© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Andrographis paniculata; Acanthaceae; Flavonoids; Terpenoids

1. Introduction

Andrographis paniculata Nees (Acanthaceae) is an erect herb found in the plains throughout India and Sri Lanka (Gamble, 1956). In the traditional Indian medicine the whole plant of *A. paniculata* is extensively used in the treatment of dyspepsia, dysentry, malaria, respiratory infections, and as an antidote for snake-bite (Kirtikar and Basu, 1975; Chopra et al., 1980). Previous phytochemical studies on this plant have resulted in the isolation of a number of flavonoids (Govindachari et al., 1969; Jalal et al., 1979; Gupta et al., 1983, 1996; Kuroyanagi et al., 1987) and labdane diterpenoids (Kleipool, 1952; Chan et al., 1971; Balmain and Connolly, 1973; Fujita et al., 1984; Matsuda et al., 1994).

In our systematic search for chemical constituents of *Andrographis* species (Damu et al., 1998 a,b, 1999; Jayaprakasam et al., 1999, 2001; Jayakrishna et al., 2001), we have investigated the roots and aerial parts of *A. paniculata* and report here the isolation and structure

E-mail address: duvvurusekarg@rediffmail.com (D. Gunasekar).

determination of a new flavone (4) and a novel 23-carbon terpenoid (7) besides five known flavonoids, 7-O-methyldihydrowogonin (1) (Gupta et al., 1983; Kuroyanagi et al., 1987), 7-O-methylwogonin (2) (Kuroyanagi et al., 1987), skullcapflavone I 2'-methyl ether (3) (Jalal et al., 1979), 7-O-methylwogonin 5-O-glucoside (5) (Kuroyanagi et al., 1987), skullcapflavone I 2'-O-glucoside (6) (Gupta et al., 1996) and four known labdane type diterpenoids, 14-deoxy-11,12-didehydroandrographolide (8) (Balmain and Connolly, 1973; Matsuda et al., 1994), andrographolide (9) (Kleipool, 1952; Matsuda et al., 1994), isoandrographolide (10) (Matsuda et al., 1994) and neoandrographolide (11) (Kleipool, 1952; Chan et al., 1971; Matsuda et al., 1994).

2. Results and discussion

Compound 4, isolated as colourless crystalline solid, showed $[M+H]^+$ peak at m/z 329.0816 and $[M+Na]^+$ peak at m/z 351.0851 in its positive ESITOFMS corresponding to the molecular formula $C_{18}H_{16}O_6$, supported by the presence of 18 carbon signals in its ^{13}C NMR spectrum. The UV absorption maxima of 4 in MeOH

^{*} Corresponding author. Tel.: +91-877-224-9045; fax: +91-877-224-8499

(258 and 297 nm) suggested a flavone structure with 2',6'-dioxygenation (Zhou et al., 1997; Damu et al., 1998a; Jayakrishna et al., 2001). A bathochromic shift of 72 nm in band I, induced by AlCl₃, unchanged on addition of HCl, indicated the presence of a free hydroxyl group at C-5 position. Its IR spectrum showed two strong absorption bands at 3438 and 1684 cm⁻¹ corresponding to hydroxyl and carbonyl functions, respectively.

The ¹H NMR spectrum of 4 showed a D₂O exchangeable downfield signal at δ 12.77 corresponding to a chelated hydroxyl group at C-5 position. A pair of meta-coupled doublets (J=2.2 Hz) at δ 6.39 and 6.63, each integrating for one proton, were assigned to H-6 and H-8, respectively. A sharp one-proton singlet at δ 6.29 which correlated to the carbon at 112.4 ppm in its HSQC spectrum was ascribed to the C-3 proton. It also showed signals due to three methoxyl groups at δ 3.76 (6H, s) and 3.82 (3H, s). The ESI-MS/MS fragmentation of the $[M+H]^+$ ion (m/z 329.1) of 4 in its retro Diels-Alder fragmentation at ring-C yielded a diagnostic peak at m/z 167.0 (1,3A+) (Ma et al., 1997) indicating the presence of a methoxyl group in ring-A. Therefore, the other two methoxyl groups in 4 should be present in ring-B. The methoxyl group at δ 3.82 was placed at C-7 based on an HMBC correlation of these protons with C-7 at 165.3 ppm and two strong NOE connectivities with H-6 (δ 6.39) and H-8 (δ 6.63) in its NOESY spectrum. The presence of AB₂ type aromatic proton signals at δ 7.49 (1H, t, J = 8.4 Hz) and 6.79 (2H, d, J = 8.4 Hz) were typical of 4', and 3', 5' protons of 2', 6'-dioxygenated flavones (Tomimori et al., 1986; Kikuchi et al., 1991). Therefore, the remaining two methoxyl groups at δ 3.76 in 4 should be present at the 2' and 6' positions. This was confirmed by NOE correlation of these methoxyl protons with H-3' and H-5' (δ 6.79) in its NOESY spectrum. Thus, compound 4 was characterized as 5hydroxy-7,2′,6′-trimethoxyflavone.

Compound 7, obtained as colourless needles, showed $[M+H]^+$ peak at m/z 373.2435 and $[M+Na]^+$ peak at m/z 395.2117 in its ESITOFMS corresponding to the molecular formula $C_{23}H_{32}O_4$, further corroborated by

4

the presence of 23 carbon signals in its ¹³C NMR spectrum. The IR spectrum of 7 showed the presence of hydroxyl, α,β -unsaturated- γ -lactone and exo-methylene functions at 3376, 1737, and 1645 and 898 cm⁻¹, respectively. Positive Legal colour reaction (Haynes, 1955) also confirmed the presence of an α,β -unsaturatedγ-lactone moiety in 7. The ¹H and ¹³C NMR spectral data of 7 were very similar to 14-deoxy-11,12-didehydroandrographolide (8) (Table 1) except for the presence of a ¹H NMR signal at δ 1.92 (6H, s) and two ¹³C NMR signals at 122.7 and 18.4 ppm (=CMe₂) corresponding to an isopropylidene moiety in 7 instead of a ¹H NMR signal at δ 4.78 due to methylene protons at C-15 (69.5 ppm) in 8. The isopropylidene moiety in 7 was found to be present at C-15 as the isopropylidene methyls at δ 1.92 showed ${}^{3}J$ and ${}^{2}J$ correlations with C-15 (144.5 ppm) and C-21 (122.7 ppm) in the HMBC spectrum, and a strong NOE cross peak with H-14 (δ 7.98) in the NOESY spectrum. HMBC correlations of H-14 (δ 7.98) with C-15 and C-21 also confirmed the location of the isopropylidene moiety at C-15. Thus, 7 was characterized as 14-deoxy-15-isopropylidene-11,12-didehydroandrographolide. Incidentally, the isolation of 7 constitutes the first report of an unusual 23-carbon terpenoid from the family Acanthaceae.

3. Experimental

3.1. General

Melting points were determined on a Kofler hot-stage apparatus and are uncorr. Optical rotations were mea-

Table 1 1 H and 13 C NMR spectral data for compounds 7 (DMSO- d_6) and 8 (CDCl₃) δ (ppm); multiplicity (J in Hz)

	¹H NMR			¹³ C NMR	
Н	7	8	C	7	8
la lb	1.48 (<i>m</i>) 1.12 (<i>ddd</i> , <i>J</i> = 13.8, 13.8, 4.6)	1.48 (<i>ddd</i> , <i>J</i> = 13.6, 3.5, 3.5) 1.12 (<i>ddd</i> , <i>J</i> = 13.5, 13.5, 4.2)	1	38.0	38.2
2a 2b	1.74 (<i>m</i>) 1.74 (<i>m</i>)	1.72 (<i>m</i>) 1.72 (<i>m</i>)	2	27.7	28.1
3	3.40 (dd, J=11.8, 4.1)	$3.44 \ (dd, J=11.4, 4.3)$	3	78.6	80.8
4	-	-	4	42.4	43.3
5	$1.17 \; (dd, J = 12.6, 2.4)$	$1.17 \; (dd, J = 12.8, 2.4)$	5	53.7	56.4
6a 6b	1.76 (<i>m</i>) 1.31 (<i>dddd</i> , <i>J</i> = 13.6, 12.6, 12.2,4.3)	1.76 (<i>m</i>) 1.31 (<i>dddd</i> , <i>J</i> =12.9, 12.9, 11.9, 4.3)	6	23.2	22.9
7a 7b	2.38 (ddd, J=13.6, 4.3, 2.3) 2.01 (ddd, J=13.6, 13.6, 5.1)	2.42 (<i>ddd</i> , <i>J</i> = 13.6, 4.2, 2.4) 2.03 (<i>ddd</i> , <i>J</i> = 13.3, 13.3, 5.1)	7	36.3	36.5
8	-	-	8	148.9	148.1
9	2.40 (d, J=10.1)	2.28 (d, J=10.1)	9	60.7	61.6
10	-	-	10	38.4	38.5
11	6.75 (dd, J=15.8, 10.1)	6.83 (dd, J=15.8, 10.1)	11	135.6	136.0
12	6.12 (d, J=15.8)	6.08 (d, J=15.8)	12	121.4	121.0
13	_	_	13	125.8	129.2
14	7.98 (s)	$7.14 \ (dd, J = 2.6, 2.1)$	14	132.6	142.9
15	-	4.78 (br s)	15	144.5	69.5
16	-	-	16	168.6	172.3
17a 17b	4.74 (<i>d</i> , <i>J</i> = 1.4) 4.42 (<i>d</i> , <i>J</i> = 1.4)	4.74 (br d) 4.49 (br d)	17	108.2	109.1
18-Me	1.10 (s)	1.22 (s)	18	23.0	22.6
19a 19b	4.18 (<i>d</i> , <i>J</i> = 10.6) 3.81 (<i>d</i> , <i>J</i> = 10.6)	4.18 (d, J=11.1) $3.31 (d, J=11.1)$	19	62.7	64.2
20-Me	0.78 (s)	0.78 (s)	20	15.5	15.9
21	_	-	21	122.7	_
22-Me 23-Me	1.92 (s) 1.92 (s)	_ _	22 23	18.4 18.4	_

sured in MeOH at 28 °C on a Perkin-Elmer 241 polarimeter. UV absorptions were measured in MeOH on a Shimadzu UV-240 spectrophotometer and IR spectra were recorded in KBr discs on a Perkin-Elmer 283 double beam spectrophotometer. 1 H and 13 C NMR spectra were recorded on Bruker Avance 400 and AC 300 spectrometers using DMSO- d_6 and CDCl₃ with

TMS as internal standard. ¹H–¹H COSY, HSQC, HMBC and NOESY (500 ms mixing time) were obtained using the standard pulse sequences. ESI-TOFMS and ESI-MS/MS were recorded in positive mode on a API Q-STAR PULSA of Applied Bio-system. CC was carried out on silica gel (Acme) finer than 200 mesh (0.08 mm).

3.2. Plant material

The roots and aerial parts of *A. paniculata* Nees were collected in December 2000 from Talakona forest, Andhra Pradesh, S. India. A voucher specimen has been deposited in the Herbarium of the Department of Botany, Sri Venkateswara University, Tirupati.

3.3. Extraction and isolation

The shade dried and powdered roots of A. paniculata (3 kg) were successively extracted with n-hexane (3 × 10 l), Me₂CO (3 × 10 l) and MeOH (3 × 10 l). Silica gel column chromatography of the hexane extract on elution with n-hexane–EtOAc step gradients yielded 1 (26 mg), 2 (50 mg) and 3 (40 mg). The acetone extract on purification over a silica gel column using n-hexane–EtOAc step gradients gave 4 (18 mg), 5 (32 mg) and 6 (35 mg).

Dried and powdered aerial parts of A. paniculata (9 kg) were exhaustively extracted with MeOH (5×15 l). The MeOH extract was soxhleted with n-butanol. The butanol soluble portion was concentrated to dryness and the residue obtained (152 g) was column chromatographed over silica gel using n-hexane–EtOAc step gradients to yield 7 (25 mg), 8 (1.2 g), 9 (1.1 g), 10 (2.2 g) and 11 (1.5 g).

3.4. 5-Hydroxy-7,2',6'-trimethoxyflavone (4)

Colourless solid (MeOH), mp 196–198 °C; UV_{max}^{MeOH} nm (log ϵ): 258 (4.13), 297 (3.77); (MeOH + AlCl₃): 268, 316, 369; (MeOH + AlCl₃ + HCl): 268, 316, 369; IR ν_{max}^{KBr} cm^{-1} : 3438 (-OH), 2969 (-OMe), 1684 (>C=O), 1539, 1461, 1262; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.77 (1H, s, OH-5), 7.49 (1H, t, J = 8.4 Hz, H-4'), 6.79 (2H, d, J = 8.4 Hz, H-3',5'), 6.63 (1H, d, J = 2.2 Hz, H-8), 6.39 (1H, d, J=2.2 Hz, H-6), 6.29 (1H, s, H-3), 3.82 (3H, s, OMe-7), 3.76 (6H, s, OMe-2',6'); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 181.9 (C=O), 165.3 (C-7), 161.7 (C-2), 161.2 (C-5), 158.2 (C-8a), 157.9 (C-2', 6'), 132.9 (C-4'), 112.4 (C-3), 109.0 (C-1'), 104.3 (C-3',5'), 104.0 (C-4a), 98.2 (C-6), 92.6 (C-8), 56.1 (OMe-2', 6'), 56.0 (OMe-7); ESI-MS/MS (positive mode) m/z (rel. int): 329.1 $[M+H]^+$ (13), 314.1 $[M+H-CH_3]^+$ (15), 298.0 $[M+H-OCH_3]^+$ (28), 167.0 (1,3A+) (100); ESITOFMS (positive mode) m/z 351.0851 [M+Na]⁺, 329.0816 $[M + H]^+$ (C₁₈H₁₇O₆ requires 329.1025).

3.5. 14-Deoxy-15-isopropylidene-11,12-didehydroandrographolide (7)

Colourless needles (MeOH), mp 207–209 °C; $[\alpha]_{\rm D}^{28}$ –21.8° (MeOH, c 0.002); UV $_{\rm max}^{\rm MeOH}$ nm (log ϵ): 233 (3.82), 315 (4.46); IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3376 (–OH), 1737 (α , β -unsaturated- γ -lactone), 1645 and 898 (exo-methyl-

ene); 1 H NMR (400 MHz, DMSO- d_{6}) and 13 C NMR (75 MHz, DMSO- d_{6}) data, see Table 1. ESI-MS/MS (positive mode) m/z (rel. int.): 373.1, $[M+H]^{+}$ (1), 355 $[M+H-H_{2}O]^{+}$ (1), 337 $[M+H-2H_{2}O]^{+}$ (5), 235 $[M+H-C_{8}H_{10}O_{2}]^{+}$ (4), 138 $[M+H-C_{15}H_{23}O_{2}]^{+}$ (8), 105 $[M+H-C_{15}H_{23}O_{2}-CH_{3}-H_{2}O]^{+}$ (100); ESI-TOFMS (positive mode) m/z 395.2117 $[M+Na]^{+}$, 373.2435 $[M+H]^{+}$ ($C_{23}H_{33}O_{4}$ requires 373.2379).

Acknowledgements

The authors thank Dr. J.P. Brouard, Laboratoire de Chimie des Substances Naturelles, MNHN, Paris, France for providing mass spectral data.

References

- Balmain, A., Connolly, J.D., 1973. Minor diterpenoid constituents of Andrographis paniculata Nees. Journal of the Chemical Society Perkin Transactions I 1247–1251.
- Chan, W.R., Taylor, D.R., Willis, C.R., Bodden, R.L., Fehlhaber, H.W., 1971. The structure and stereochemistry of neoandrographolide, a diterpene glycoside from *Andrographis paniculata* Nees. Tetrahedron 27, 5081–5091.
- Chopra, R.N., Nayer, S.L., Chopra, I.C., 1980. Glossary of Indian Medicinal Plants. Council of Scientific and Industrial Research, New Delhi. p. 18.
- Damu, A.G., Jayaprakasam, B., Gunasekar, D., 1998a. A new flavone 2'-glucoside from *Andrographis alata*. Journal of Asian Natural Products Research 1, 133–138.
- Damu, A.G., Jayaprakasam, B., Rao, K.V., Gunasekar, D., 1998b. A flavone glycoside from *Andrographis alata*. Phytochemistry 49, 1811–1813.
- Damu, A.G., Jayaprakasam, B., Gunasekar, D., Blond, A., Bodo, B., 1999. Two acylated flavone glycosides from *Andrographis serpylli-folia*. Phytochemistry 52, 142–151.
- Fujita, T., Fujitani, R., Takeda, Y., Takaishi, Y., Yamada, T., Kido, M., Miura, I., 1984. On the diterpenoids of *Andrographis paniculata*: X-ray crystallographic analysis of andrographolide and structure determination of new minor diterpenoids. Chemical and Pharmaceutical Bulletin 32, 2117–2125.
- Gamble, J.S., 1956. Flora of the Presidency of Madras, Vol. 2. Botanical Survey of India, Calcutta. p. 1048.
- Govindachari, T.R., Pai, B.R., Srinivasan, M., Kalyanaraman, P.S., 1969. Chemical investigation of Andrographis paniculata. Indian Journal of Chemistry 7, 306.
- Gupta, K.K., Taneja, S.C., Dhar, K.L., 1996. Flavonoid glycoside of Andrographis paniculata. Indian Journal of Chemistry 35B, 512–513.
- Gupta, K.K., Taneja, S.C., Dhar, K.L., Atal, C.K., 1983. Flavonoids of Andrographis paniculata. Phytochemistry 22, 314–315.
- Haynes, L.J., 1955. In: Peach, K., Tracey, M.V. (Eds.), Modern Methods in Plant Analysis, Vol.II. Springer-Verlag, Berlin, p. 583.
- Jalal, M.A.F., Overton, K.H., Rycroft, D.S., 1979. Formation of three new flavones by differentiating callus cultures of *Andrographis pani*culata. Phytochemistry 18, 149–151.
- Jayakrishna, G., Hari Kishore, P., Venkata Rao, C., Gunasekar, D., Blond, A., Bodo, B., 2001. Two new 2'-oxygenated flavones from Andrographis elongata. Chemical and Pharmaceutical Bulletin 49, 1555–1557.
- Jayaprakasam, B., Damu, A.G., Gunasekar, D., Blond, A., Bodo, B., 1999. Dihydroechioidinin, a flavanone from *Andrographis echioides*. Phytochemistry 52, 935–937.

- Jayaprakasam, B., Gunasekar, D., Rao, K.V., Blond, A., Bodo, B., 2001. Androechin, a new chalcone glucoside from *Andrographis echioides*. Journal of Asian Natural Products Research 3, 43–48.
- Kikuchi, Y., Miyaichi, Y., Yamaguchi, Y., Kizu, H., Tomimori, T., Vetschera, K., 1991. Studies on the constituents of *Scutellaria* species. XIV. On the constituents of the roots and the leaves of *Scutellaria alpina* L. Chemical and Pharmaceutical Bulletin 39, 199–201.
- Kirtikar, K.R., Basu, B.D., 1975. Indian Medicinal Plants, Vol. 3. Periodical Experts, New Delhi. pp. 1884–1886.
- Kleipool, R.J.C., 1952. Constituents of *Andrographis paniculata* Nees. Nature 169, 33–34.
- Kuroyanagi, M., Sato, M., Ueno, A., Nishi, K., 1987. Flavonoids from *Andrographis paniculata*. Chemical and Pharmaceutical Bulletin 35, 4429–4435.

- Ma, Y.L., Li, Q.M., Van den Heuvel, H., Claeys, M., 1997. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Communications in Mass Spectrometry 11, 1357–1364.
- Matsuda, T., Kuroyanagi, M., Sugiyama, S., Umehara, K., Ueno, A., Nishi, K., 1994. Cell differentiation- inducing diterpenes from Andrographis paniculata Nees. Chemical and Pharmaceutical Bulletin 42, 1216–1225.
- Tomimori, T., Miyaichi, Y., Imoto, Y., Kizu, H., Namba, T., 1986. Studies on the Nepalese crude drugs. VI. On the flavonoid constituents of the root of *Scutellaria discolor* coleber. Chemical and Pharmaceutical Bulletin 34, 406–408.
- Zhou, Y., Hirotani, M., Yoshikawa, T., Furuya, T., 1997. Flavonoids and phenylethanoids from hairy root cultures of *Scutellaria baica-lensis*. Phytochemistry 44, 83–87.